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Philosophical Statement 

The fundamentals of numeracy, as language is to literacy, are innate (Rips, Bloomfield,  

Asmuth, 2008). From the earliest age, babies begin to make sense of the world though the 

recognition of number and space, with continuing conceptualisation in the pre-school 

years. Paralleling the development of oral language, mathematical literacy progresses with 

concepts related to quantification and spatial awareness, and is both represented and 

shaped by mathematical language (e.g. "more than", "closer", etc.). The link between 

language and numeracy becomes more tangible with milestones such as the cognitive 

comprehension of one-to-one correspondence (stable number order cardinality), and 

continues with the parallel development of mathematical concepts and mathematical 

language as the child progresses1.  

 

Another way to consider the mathematical concept/language link is in terms of 

informal/formal knowledge (Russell & Ginsberg, 1984).  Innate mathematical knowledge 

develops informally, while the curriculum and assessment relies primarily on the 

communication of formal mathematical knowledge. Teaching maths--numerical, spatial, 

graphical, statistical and algebraic disciplines (AAMT, 1997)--recognises and builds on 

learner's innate knowledge in order to assist the learner to construct and formalise their 

mathematical knowledge. In addition to a "profound, flexible, and adaptive knowledge" 

(Ma, 1999 as cited in Van de Walle, Karp & Bay-Williams, 2010, p. 9), the teacher 

requires a perceptive and empathetic awareness of the learner's mathematical 

developmental phase in both concept and language in order to begin a dialogue with the 

student.  Pedagogy begins with an analysis of prior knowledge and respect for student 

language2, then developmentally continues with problem-solving experiences within the 

learner's Zone of Proximal Development (ZPD) (Vygotsky, 1978).  Whenever possible, 

therefore, the teacher initiates lessons with physical objects (to build innate knowledge)3, 

then with conceptual scaffolding and modelling of formal language, guiding numeracy 

assimilation and accommodation of increasingly abstract conceptualisation. The degree of 

conceptual understanding informs the appropriate timing for the introduction of abstract 

algorithms, as dependence on algorithms can result in learners losing "some of their 

                                                
1 One of the pedagogical challenges, of course, is the duality of specific language expressions, i.e., the Bible's 
"Be fruitful and multiply," promotes a conception that multiplication always leads to an increase in quantity. 
2 At this diagnostic level, with Socratic questioning, the teacher investigates student logic used to justify and 
explain understanding of a particular concept in a non-evaluative manner. 
3 Recognition of the progression of abstraction is useful, e.g. start counting exercises with tangible contextual 
items, such as apples, then with counters, then with representations of counters, etc. This assists with 
developing a "grounded appreciation of context" (AAMT, 1997, p. 15). 
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capacity for flexible and creative thought" (Board and Davenport, 1993 as cited in Clarke, 

2005, p. 95). 

 

One of the challenges for teachers, perhaps without explicit memory of their own steps and 

stages of learning, is the ability to deconstruct mathematical knowledge into its 

components while retaining the connecting linkages to the original broader concepts. This 

process begins with a review of "big ideas" appropriate for the learner (Van de Wall, Karp, 

Bay-Williams, 2010); for example, one of the "big ideas" for operations is the relationship 

of addition and subtraction. By focusing on a specific concepts and linkages, the teacher 

can target the learner's development of efficient mathematical thinking and strategies that 

lead to procedural fluency and adaptive reasoning. Consistently reinforcing links to the 

learner's existing cognitive schema builds confidence in math by allowing learners "to 

realising that he [or she] has been thinking mathematics all along (Bruner, 1995, p. 333). 

  

Finally, a collaborative classroom model enhances learning. The classroom environment 

can be "competitive, individualistic, or collaborative" (Loreman, Deppeler & Harvey 2005, 

p. 155). The collaborative model, with small heterogeneous groups of five students, assists 

"pupils [to] become numerate though purposeful interpersonal activity based on 

interactions with others" (Askew, Brown, Rhodes, Wiliam, & Johnson, 1997, p. 18), and 

encourages the expression of multiple strategies which can lead to stronger understandings. 

Planning for multiple entry points and differentiating lesson plans (Van de Walle & Lovin, 

2006) provides opportunities for both reinforcement and extension. 

 

Teaching Resources 

The Overview of Diagnostic Map: Number (Appendix 1) (First Steps, 2012) provides 

verbal descriptions of mathematical thinking phases in the early years, beginning with the 

"emergent phase" and progressing to "operating phase", representing increasing levels of 

abstraction. Such resources are essential diagnostic tools to identify student understanding, 

as well as providing guidance for appropriate ZPD experiences. There are many resources 

in the diagnostic category (including assessment tools); a comprehensive list has been 

compiled by Australian Council for Educational Research [ACER] (Forster, 2009). 

Knowledge of the Piagetian successive stages of development leading to the formal 

operational stage also fits in this realm of resources.  For example, learners in the pre-

operational stage (typically to year 2), have "incomplete" logic (Piaget, 1972/2008) in 

terms of reversibility, conservation, and transitivity; therefore the design of lessons should 

reflect these aspects and primarily focus on activities such as problem-solving tasks with 
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physical materials to build quantification and object-characterisation skills. Similarity, in 

the concrete operational stage (typically to year 5/6), hands-on ("concrete") activities and 

contextual word-problems (rather than a pure algebraic equation, for example) would be 

appropriate as learners have yet to reach the formal operational stage of abstract reasoning 

(Ojose, 2008). 

 

The second resource for appropriate pedagogy is represented by a handout presented at the 

University of Tasmania (Chick, 2012) entitled "Operations".  The handout is a taxonomy 

of addition and subtraction "situations", classified into four categories: "change-add to 

(join)", "change--take from (separate)", "combine (part-part-whole)", and "compare".  

Though there are other ways to classify addition and subtraction problems, having a 

specific taxonomy as a reference can provide the stimulus for creating a variety of word 

problems to expand the learner's heuristic abilities. A similar taxonomy can be created for 

identifying mental computation strategies (i.e. "split tens", "sequential", "complementary 

addition")(McIntosh, 2003) which can be used a resource in identifying and scaffolding 

informal logic.  Appropriate language is also a key pedagogical attribute and aligned with 

this type of resource, which helps deconstruct "big ideas" for a consistent pedagogy. For 

example, the use of  "base-ten" language (i.e. "four tens and seven" for 47) when teaching 

place value concepts can provide explicit numeracy links (Van de Walle, Karp, Bay-

Williams, 2008). 

 

The third resource that relates to my philosophy of teaching is represented by the Multi-

Base Arithmetic Blocks (MAB) (Appendix 3). Experiential exploration of physical 

manipulatives (and well designed virtual ones) builds innate mathematical knowledge by 

providing a means to creatively formulate and discover mathematical investigations, often 

with multiple solution paths. Language is also developed: when using MAB blocks, the 

concept of "trading", when applied to later formal algorithms, offers a conceptual link. In 

the pre-operational stage, playful activity with a variety of materials (i.e square cubes, 

nesting cups, shape puzzles, sectioned objects that fit together) can be encouraged with 

prompts and questions (Eisenhauer and Feikes, 2009). In the concrete-operational stages of 

development, more complex manipulatives combined with explicit initial scaffolding 

provides the informal groundwork for subsequent formal reasoning. In contrast, 

"experiential deficits in informal knowledge are the most robust predictors of difficulties 

acquiring formal math skills (Griffin, Case, & Siegler, 1994 as cited in Methe, 2009, p. 

10).  
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Misconceptions in Mathematical Reasoning 

In contrast to mistakes, a misconception in mathematical reasoning can occur when a 

learner, in constructing mathematical knowledge, extends a mathematical concept or "rule" 

in an fallacious manner. With modern constructivist teaching pedagogy, which encourages 

the learner to build on innate knowledge, the obligation for the teacher to be vigilant in 

identifying misconceptions becomes especially critical. The primary pedagogy involves a 

diagnosis focused on providing students opportunities to comprehensively explain their 

logic. Once a misconception is identified, the teacher then provides learning opportunities 

and experiences that encourages self-recognition of the misconception, which then prompts 

the student to modify their cognitive schema by accommodating the revised conception. 

Built on the Piagetian concept of disequilibrium, in order for a learner to abandon a 

misconception and accommodate conceptual exchange, there needs to be dissatisfaction 

with the misconception (Hewson, 1992). Note that the misconception diagnostically 

informs the level of student understanding; as Osborne expressed, "We must start where 

the child is" (1982). 

 

The misconception I have chosen to address relates to the "law of small numbers" (Tversky 

& Kahneman, 1971, p. 105) which is the misconception that a small sample represents a 

larger group. In contrast, the "law of large numbers" reflects the accurate inference that the 

larger the sample, the larger the probability of the sample representing the whole. The 

misconception can arise from an intuitive extension of the quantitative part-whole concept 

of numbers, and is interrelated to other misconceptions; Fischbein and Schnarch (1997) 

outline seven common probabilistic misconceptions: 

1. Representativeness (i.e., the overestimation of an event's likelihood due to its 

similarity to the parent form). 

2. Negative and positive recency (i.e., coin tosses have "memory"). 

3. Compound events (i.e., similar outcomes from a two-coin toss are not differentiated). 

4. Conjunction fallacy (i.e., personal bias influences perception of likelihood) 

5. Sample size (i.e., variation from mean is misjudged in smaller sample). 

6. Availability (i.e., the likelihood of more 'available' events, such as a isolated event 

portrayed in the media, is overestimated). 

7. Falk Phenomenon (i.e., the effect of a gap in time on probability). 

 

 The "law of small numbers" is related to the misconception of representativeness 

(Fischbein & Schnarch, 1997) and also linked to the misconception of recency, as the 
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notion that a random generated set can have "memory" is similar to the expectation that 

consistent patterns will be seen in small samples.   

 

I chose this difficult misconception because it highlights the importance of reinforcing 

mathematical language and informal mathematical reasoning as the groundwork for 

statistical numeracy, as the formal analysis of probability requires abstract combinatorial 

logic4, and as Confrey (1990) argues, preferentially initially presented with a subjective 

approach to reinforce intuition. Probabilistic misconceptions can detrimentally affect 

critical thinking skills when an individual is presented with data and sampled information. 

The misconception can be diagnosed5 with the "hospital problem": 

In a small town at a small hospital, 10 babies are born per day on average.  In the 

nearby city at a large hospital, 50 babies are born per day on average.  Each hospital 

has a celebration when 60% of the births on a given day are girls; they call this a "girl 

day".  Which hospital--the small one or the large one--is more likely to have a girl day, 

or would they both be equally likely to have a girl day? (adapted from Fischbein & 

Schnarch, 1997)6. 

Most children have the misconception that both hospitals have equal likelihood for girl 

days, with the larger hospital being the second choice (Fischbein & Schnarch, 1997)7.  

 

Diagnostic assessment continues with an understanding of the level of development. 

Beginning with Piaget and Inhelder in 1951 (Davies, 1965), researchers have linked 

probabilistic reasoning with cognitive development stages, yet no complete theory has 

emerged (Way, 2003). Way distinguishes three stages: 

Stage 1: Non-probabilistic thinking. Students in this stage have minimal 

understanding of randomness, are reliant on visual comparison, and are unable to 

order likelihood. 

Stage 2: Emergent Probabilistic Thinking. Students in this stage can recognise 

impossible or equally likely sample spaces, and use additive proportional 

reasoning to make generalisations about likelihood. 

                                                
4 Because of its dependence on abstract reasoning, the formal analysis of probability would be more 
appropriate when learners have reached the formal operational stage. 
5 This problem would only be appropriate for the upper-primary grades, but a similar problem could be 
created that was more contextual for younger students. For example: Ann has a box of chocolates, filled with 
jelly-filled chocolates and caramel-filled chocolates, which all look the same, but there are less caramel-
filled chocolates than jelly-filled ones. Bob picks two chocolates and hopes that both are caramel, while 
Cara picks six chocolates and hopes that all six will be caramel.  Do you think Bob or Cara will be more 
likely to have their hopes realised, or are they both equally likely? Explain why. 
6 The original "hospital problem" was posed by Kahneman and Tversky in 1972. 
7 The smaller hospital, of course, is the correct answer, due to the smaller sample size. 
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Stage 3: Quantification of Probability. Students in this stage begin to recognise the 

relationship between randomness and likelihood, use multiplicative proportional 

reasoning, and are developing a language of probability (e.g. correct use of 

"chance" and "more likely") (Way, 2003). 

 

Addressing the misconception is dependent on the diagnostic assessment and involves 

exposure to activities which reinforce statistical numeracy intuition8, scaffolded with the 

development of probabilistic language.  A three tier approach is recommended: 

1. Basic understanding of  statistical terminology. 

2. An understanding of statistical language and concepts when they are embedded in 

the context of a wider social discussion. 

3. A questioning attitude one can assume when applying more sophisticated concepts 

to contradict claims made without proper statistical foundation (Watson and 

Moritz, 2000, p. 45). 

In particular, Watson and Moritz focus on developing the technical understanding of the 

language of sampling though a series of explorations that differentiate the common usage 

of "sampling" (in reference to a homogeneous whole such as a "sample of cheese" or a 

"sample of blood") with the statistical usage through explorations of group variability, such 

as the height or weight of students, which highlight the relative representativeness of larger 

samples. 

 

Probability lesson plans are informed by the "big ideas" already discussed, and "simulation 

is a technique used for answering real-world questions ... in which an element of chance is 

involved" (Van de Walle, Karp and Bay-Williams, 2010, p. 456). POE (predict-observe-

explain) investigations with ICT manipulatives (see NLVM, 2012) are appropriate. Using 

contextual examples drawn from student's interests assists with engagement. Parallel 

lessons in equiprobability would also be of benefit in addressing sampling misconceptions.  

In conclusion, appropriate probability pedagogy at each stage of a child's development is 

important for the progressive construction of statistical numeracy, providing an increased 

intuition of situations where statistical bias can occur, as well as "motivate the questioning 

attitudes required of future citizens" (Watson & Moritz, 2000).

                                                
8 Intuition in this context is the secondary intuition developed by systematic instruction that are “acquisitions 
that have all the characteristics of [primary] intuitions but . . . are formed by scientific education, mainly in 
school” (Fischbein, 1975 as cited in Greer, 2001, p. 18). 
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Appendix 1 

 

Source: www.deewr.gov.au/Schooling/Programs/LiteracyandNumeracy/Documents/DiagToolsReport.pdf 
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Appendix 2 

 

Source: Chick, 2012. 
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Appendix 3 

 

Source: University of Melbourne Graduate School of Education Science and Mathematics Education 
http://extranet.edfac.unimelb.edu.au/DSME/decimals/SLIMversion/teaching/models/mab.shtml 


